零一书库

手机浏览器扫描二维码访问

第五百九十三章 高斯-博内-陈定理曲面几何(第1页)

1827年,高斯证明了这一定理。

1944年,博内将这一定理推广到一般曲面上,由任一闭曲线C围成的单连通区域,形成了着名的高斯-博内公式.

1944年,陈省身给出了高斯-博内公式的内藴证明.

欧拉数虽然神秘有趣,可还是引不起数学家们的强烈兴趣,原因是它太简单了,小学生都可以很快弄懂这些数的来源,那个时代的数学家们总是希望有个积分,微分什么的,以显示其高深莫测,高斯那时候正在研究曲面和曲线的几何学,对于各种曲率玩得和吃饭喝水似的,这个时候人们还没有意识到弯曲可以是几何的内蕴性质,而一般考虑嵌入曲率,第一个认识到弯曲可以不需要嵌入的人是黎曼.

某天,对于没有边界的二维曲面,高斯搞了一个曲率做了一个积分,他发现,他能够计算出欧拉数!很快他把这个公式推广到带边界(二维面上有洞的情形)的二维曲面,同样得到了相应的欧拉数.

高斯当时应该是没有认识到这个公式的巨大作用,以至于他懒得去发表这样的结果,他认为这种工作对他而言太简单了,只和弟子们稍微讨论了一下,然后,就转去研究别的东西去了,可见这些宗师级的人物也有走眼的时候,几年以后,博内得到了同样的结果.

令人兴奋的是,我们导出黎曼曲率的途径,还能够让我们一瞥高斯-博内公式的风采,真正体验一番研究内蕴几何的味道.

高斯-博内公式是大范围微分几何学的一个经典的公式,它建立了空间的局部性质和整体性质之间的联系,而我们从一条几何的路径出发,结合一些矩阵变换和数学分析的内容,逐步导出了测地线、协变导数、曲率张量,现在还可以得到经典的高斯-博内公式,可见我们在这条路上已经走得足够远了,虽然过程不尽善尽美,然而,并没有脱离这个系列的核心:几何直观.

在曲面上的形状:角差变量=曲率K上的面积大小的积分。

变化量则表示为面积分。这就是微分几何中的高斯-博内公式的主要内容,即角差等于高斯曲率的面积分,诸如球面三角形的内角和等内容都与它有关,它是整体微分几何的开山之作之一

喜欢数学心请大家收藏:()数学心

请勿开启浏览器阅读模式,否则将导致章节内容缺失及无法阅读下一章。

[少年漫同人] 和新一同居之后  夏夜撕咬  [综英美] 维持人设好难  对照组贴脸开大[快穿]  无纠+番外  群友全穿越!就我在地球  穿进炮灰文,太上皇竟能读我心!  1635改变世界  [足球同人] 带刀侍卫  花魁夫郎[女尊]  我是九世单传的天才幸运糖宝  萝莉:变成吸血姬后被魔女捡到了  丘比特今夜失明  我的员工全是言情女主  玄灵界都知道我柔弱可怜但能打  如果男主太晚才出现  [综漫] 除了荒神,所有人都重生了  [综漫] 白濑捅刀失败以后  啊,张嘴!天道又追着福宝喂饭了  君为依[重生]  

热门小说推荐
网游之美女军团

网游之美女军团

网游之美女军团...

邪帝追妻:腹黑相公AA制

邪帝追妻:腹黑相公AA制

淡衣一把揪住男人的衣领,臭皇帝,你到底要怎样才能给我休书?男人笑的魅惑倾城,给朕再生个孩子,先!尼玛做梦!从穿越那天开始,淡衣就无所不用其极的惦着一件事,一纸休书。各种诬陷陷害,各种下毒流言,各种绿帽子阴谋,阳谋。淡衣以为只有自己想不到,没有做不到。可为什么,那休书不止拿不到,反而越来越远?...

穿越从靖康之耻开始

穿越从靖康之耻开始

那个时代,宋朝有着美国的综合国力,军费开支堪比德国法西斯,军队战斗力只是意大利水准,百姓过着阿富汗一般的苦逼生活。穿越到了宋朝,成为了大宋皇子,可惜没有红袖添香,没有扬州瘦马,有的只是金军已杀来了,这还让不让人活了。既然不让我好过,我就跟你拼命。于是一代宋皇崛起了。金兀术叹息道仪王如猛虎,使我女真难安息!士大夫说昏君,竟然要改制,竟敢篡改祖训!岳飞道官家性情刚烈,堪比太祖,我朝中兴有望!秦桧颤声道靖武皇残暴堪比始皇,大宋势如危卵!赵朴淡淡道我死后,管他洪水滔天!...

天降领主

天降领主

从天而降,巧救国王,被封领主,从此走上争霸天下的道路。脑中藏有地球先进思想,手中握有逆天神器制造基地,权掌百万精英高手,亿万机械兵种,踏着敌人的尸骨走向世界的巅峰。收藏!收藏!收藏!收藏!收藏!...

重生女配菇凉

重生女配菇凉

都可以让一个这么自私自利的异世魂魄成为天道的宠儿,为何就忍受不了女配菇凉蹦跶?咱这辈子的娱乐就是逗女主男主玩,陪他们耗到底,谁让菇凉一不小心就重生了。...

回归大宋

回归大宋

定鼎中原后的强大大宋,终于不可避免的走入了荒唐奢侈中,文官思定,武官畏权,两次北伐皆徒劳而返,徒耗国力,致使朝堂之上主和之风大胜,番邦越发放肆。而在这一年寒冬,一家来自辽国的汉人,进入了繁华的开封城中,瞬间挑动了所有人的神经。...

每日热搜小说推荐